

Prof. Dr.-Ing. Markus Friedrich

isv

Institute for Road and Transport Science Chair for Transportation Planning and Traffic Engineering Pfaffenwaldring 7 • 70569 Stuttgart • Tel. +49 (0)711 685-82482 • www.uni-stuttgart.de/isv/

Urban Mobility 20xx

What happens, if automated vehicles (AV) operate

1. as **carsharing**-fleets and replace buses or the entire public transport supply

2. as **ridesharing**-fleets and replace buses or the entire public transport supply

Study Framework

- derived from OECD study on Lisbon
- transferred to **Stuttgart Region**

Corporate Partnership Board Report

OECD

Outline

Mobility in a world with Automated Vehicles (AV)

- Test Case Stuttgart Region
- Conclusion

Outline

- Mobility in a world with automated vehicles (AV)
- Test Case Stuttgart Region
- Conclusion

Data Source: Stuttgart Region Travel Demand Model

Inhabitants	2.7 Mio
Cars	1.6 Mio

Scenarios

		Demand Split	
	Train	Carsharing	Ridesharing
1	yes	100%	0%
2	yes	0%	100%
3	no	100%	0%
4	no	0%	100%

Impacts

- Required Number of Vehicles
- Vehicle Kilometers Travelled

Number of Vehicles: Current State

Number of Vehicles: Current State vs. AV-Carsharing

Number of Vehicles: Current State vs. AV-Ridesharing

Vehicles Total

AV-NS AV-Sharing

Ratio Ridesharing / Carsharing / NoSharing \approx 1,0 : 2,5 : 12,5

Vehicle Kilometers

■ AV-NS Full ■ AV-Sharing Full ■ AV-Sharing Empty

Volumes Scenario Train + 100% Carsharing

0 0

- Total car distance travelled: +19%
- Occupancy rate: 1.3

Volumes Scenario Train + 100% Ridesharing

20 km

12 16

8

- Total car distance travelled: -36%
- Occupancy rate: 2.4

Volumes Scenario No-Train + 100% Carsharing

- Total car distance travelled: +39%
- Strong traffic increase in the entire region

Volumes Scenario No-Train + 100% Rideharing

- Total car distance travelled: -19%
- Traffic increase in inner city

Outline

- Mobility in a world with automated vehicles (AV)
- Test Case Stuttgart Region
- Conclusion

What probably will happen...

- AV increase service quality
 demand for car travel increases
- transfers are not attractive on short trips
 → AV will draw demand from public transport
- A self-driving car will not be much more expensive than a privately used car today and it will offer the user additional benefits compared to a shared vehicle
 - \rightarrow we fail to use the advantages of AV
 - → a new equilibrium car/public transport with more car traffic

Conclusion

AV can have a positive impact on urban and regional traffic, if

- public transport offers a high quality service with rail and BRT
- many travelers use ridesharing

This happens only with accompanying measures

- change speed limit for urban road transport
- introduce road tolls
 - depending on occupancy rate
 - exceptions for public busses and ridesharing systems
- access limitation
- development of specific self-driving cars for ridesharing vehicles

Prof. Dr.-Ing. Markus Friedrich

isv

Institute for Road and Transport Science Chair for Transportation Planning and Traffic Engineering Pfaffenwaldring 7 • 70569 Stuttgart • Tel. +49 (0)711 685-82482 • www.uni-stuttgart.de/isv/